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ABSTRACT: In the present paper Mahpeyker Ozturk and Metin Basarir have defined a new space called a
BA -cone metric space by taking Banach algebra instead of a Banach space. Some common fixed point
theorems involving rational expressions have been proved and some consequences obtained in these spaces.
Also we have extended this work to four mappings with a weak commutatively property in BA — cone metric

spaces for Integral type mappings.
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I. INTRODUCTION

Fixed point theory plays basic role in application of
various branches of mathematics from elementary
calculus and linear algebra to topology and analysis.
Fixed point theory is not restricted to mathematics and
this theory has many application in other disciplines.
This theory is closely related to game theory, military,
economics, statistics and medicine.

Much work has been done involving fixed points using
the Banach contraction principle. This principle has
been extended to other kinds of contraction principle,
such as contractive conditions involving product,
rational expressions and many others. The Banach
contraction principle with rational expressions have
been extended and some fixed and common fixed point
theorems obtained in [4-5]. In [3], common fixed points
for a pair of self mappings satisfying a rational
expression have been obtained.

Quiet recently; Huang and Zhang[6] generalized the
notion of metric space by replacing the real numbers by
an ordered Banach space, thereby defining cone metric
spaces. They have investigated convergence in cone
metric spaces, introduced completeness of cone metric
spaces, and proved a Banach contraction mapping
theorem, and some other fixed points theorems
involving contractive type mappings in cone metric
spaces using the normality condition. Later, Various

authors have proved some common fixed point
theorems with normal and non-normal cones in these
spaces.

The aim of this paper is to extend the result in [3] and
Mahpeyker Ozturk and Metin Basarir to BA- cone
metric spaces which we have defined using a Banach
algebra instead of a Banach space. We get some
consequences related to some special properties of
mappings for Integral type.

II. PRELIMINARIES

Mahpeyker Ozturk and Metin Basarir give some facts
and definitions which we need in the sequel.

Let B be a real Banach space and K a subset of B. Then
K is called a cone if and only if

1. K is closed, nonempty and K7 {0},

2.a,b ER,a,b= 0, x,y £ K, = ax+by £ K
3.x&EKand —X EK=x=0.

If we take a Banach algebra instead of Banach space,
then we say that K is a BA-cone. Given a cone KCB,
we define a partial ordering <with respect to K by x
< yif and only if y-x € K .We write x< y if x< y

but x # y; x KLy if y — x € int K, where int K is the
interior of K.
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We write X< y if X== y but x F y; x <&y if y — x & int K, where in t K is the interior of K. The cone K is called
normal if there is a number MZ=0 such that for all x,y&= B,
0 < x< yimplies ||x]| < M||y]| . @.1)

2.1. Definition. Let X be non empty set,B a real Banach space and KB a cone. Suppose the mapping d : X XX—
B satisfies

d;.0<Z d(x,y) for all x,y & K and d(x,y) = O if and only if x = y;
dy. d(x,y) = d(y,x) for all x,y E K ;

ds. d(x,y) < d(x,2)+ d(zy) for all x,y,z € X.
Then d is called a cone metric on X and ( X,d) is called a cone metric space.lt is obvious that the concept of a cone
metric space is more general than that of a metric space.
If we replace the Banach space with a Banach algebra in Definition2.1 then we obtain a new space which is called a
BA- cone metric space.

2.2 Example. Let B = Rz, K={(xy) :xy= 0}, X=Rand let d : XXX—+B be defined by d(x,y) = (|x —
yl , |x - yl), where & = 0 is a constant.Then ( X,d) is a BA-cone metric space since B is a real commutative
Banach algebra.

2.3 Example. (Mahpeyker Ozturk and Metin Basarir) Let C I% ([0,1]) be the space of all real functions on [0,1]

whose second derivative is continuous. We recall that for a,b > 0.the space C I% ([0,17) with the norm

1= 1f oot all f oo + DI Il co

Is a Banach space, where ” ”oo = Supl t | .This space is a Banach algebra if and only if 2b < az ,If
te[0,1]

we take X =B = CI% ([0,1]) with the above norm and K = { uc B: u == 0}, then ( X,d) becomes a cone metric space

where d(x,y) = (te[;’fglx(t) — y(t)l)f(t) and £ : [0,1]= R, f(t) = e% But if we take 2b > a? then B is

not Banach Algebra, hence (X,d) is not a BA-cone metric space.
2.4. Definition. Let (X,d) be a cone metric space, {xn} a sequence in X and
xE X. If for every c€ B with 0 KL ¢,

1. thereis N € [ such that for all n=> N, d(Xp ,x) K ¢, then {xn} is said to be convergent,

2. thereis N € Ml such that for alln, M > N, d(Xp,, X;) <K C, then {xn} is called a Cauchy sequence
in X.
A cone metric space X is said to be complete if every Cauchy sequence in X is convergent in X. It is known that
{xn} converges to x&= X if and only if d(X;,,x) = 0 asn— 00,

2.5 Remark. Let us recall that if X is a normal cone, x = K, aE R, at= [0,1) and x =ax, then x = 0.
Let f: X— X and Xy € K. The function f is continuous at Xy if for any sequence X, —* Xy we have f(xn)

—f( Xg).
Throughout the paper, we take B to be a Banach commutative division algebra. Recall that, a division algebra is an
algebra with identity e, in which every non —zero element is a unit, where the identity is a non-zero element such
that xe = ex = x for all x and in any algebra with identity e, an element which has an inverse is called a unit , i.e X is

a unit if and only if there exists an inverse y such that xy = yx = e. We write y = X -1 and observe that X -1 is
unique when it exists.
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Also, throughout we will use a cone which has non empty interior. Therefore the uniqueness of the limit for a
convergence sequence will be guaranteed.

2.6. Theorem (Banach’s contraction principle) Let (X, d) be a complete metric space, c€(0,1) and f: X—X be a
mapping such that for each x, y €X,

d(fx, fy) < cd (%, y) Then f has a unique fixed point a €X, such that for each

xe€ X, lim,_, f™*(x) = a.
After the classical result, Kannan [7] gave a subsequently new contractive mapping to prove the fixed point theorem.

Since then a number of mathematicians have been worked on fixed point theory dealing with mappings
satisfying various type of contractive conditions.

In 2002, A. Branciari [2] analysed the existence of fixed point for mapping f defined on a complete metric space
(X,d) satisfying a general contractive condition of integral type.
2.7 Theorem (Branciari) Let (X, d) be a complete metric space ,c € (0 ,1) and let f: X— X be a mapping
such that for each x, y €X,

d (fxf d(x,
fO (Bx13) @(t)dt <c fO ) @(t)dt where @:[0,+ 00) —[0,+ 00) is a Lebesgue integrable mapping
which is summable on each compact subset of [0,+ 00) , non-negative ,and such that for each & > 0,

£ .
fO @(t)dt , then f has a unique fixed point a €X, such that for each x € X, hmn_m fn(X) = a.

After the paper of Branciari, a lot of research works have been carried out on generalizing contractive condition of
integral type for different contractive mappings satisfying various known properties. A fine work has been done by
Rhoades [2] extending the result of Branciari by replacing the condition [1.2] by the following

dx.fy)+d(y.fx)
d (fx,f maxid(x,y),d(x,fx),d(y, e T
fo( y) P(t)dt < [ {aGey).ater0,a0.1y) . }(b(t)dt.
2.8 Theorem. Let (X,d) be a BA- complete cone metric space, K a BA-normal cone with normal constant M.

Suppose the mappings S and T are two self- maps of X such that S and T satisfy the inequality
d(x,5x)d (x,Ty) +[d(x,¥)]* +d (x,5x)d (x,y)
d(x,Sx)+d(x,y)+d(x,Ty)
for all x, yin X with x# y, 0< @ < 1 and d(x,Sx) + d(x,y) + d(x,Ty) # 0. Then S and T have
a common fixed point. Further if d (x ,Sx ) + d(x ) y) + d(x ) Ty) = 0 implies d(Sx,Ty) =0, then S and T

have a unique common fixed point.
Our main results are extended and modified for above result.

III. MAIN RESULTS

dSx,Ty) < «

In the following theorem we carry over to BA- cone metric spaces.
3.1 Theorem. Let (X,d) be a BA- complete cone metric space, K a BA-normal cone with normal constant M.
Suppose the mappings S and T are two self- maps of X such that S and T satisfy the inequality

d(x,Sx)d(x,Ty)+ [d(x,y)]2 +d(x,Sx)d(x,y)

d(Sx,T
fo (Sx,Ty) Q)(t)dt < afo d(x,Sx)+d(x,y)+d(x,Ty) @(t)dt

d(x,Tx)d(x,y)+d(x,Ty)d(x,y)+[d(x)]?
d(x,Sx)+d(x,y)+d(x,T
+B [ xS tdley)ta(xTy) @(t)dt

d(x,Tx)d(x,Ty)+d(x,Sx)d(x,y)+[d(x,y)]2
d(x,Sx)+d(x,y)+d(x,T,
vy fy SN g gy

(3.1.1)



Prajapati, Bhardwaj and Dwivedi 196

For all x, y in X with x# y, 0< a + B + 7y <1 and Q):[O,+ 00) —[0,+ 00) is a Lebesgue integrable
mapping which is summable on each compact subset of [0,+ 00) , non- negative ,and such that for each & > 0,
fog @(t)dt . Also

d(x, SX) + d(x, y) + d(x, Ty) #F 0. Then S and T have a common fixed point. Further if

d(x, SX) + d(x, y) + d(x, Ty) = 0 implies d(Sx,Ty) = O, then S and T have a unique common fixed
point.

Proof: Let an Xy be arbitrary point of X, and define X, by
Xon+2=TX2n+1. X2n+1=SX2n.n=0,1,2...

Let d(x,Sx) + d(x,y) + d(x,Ty) + 0. Then using (3.1),

d(*2n+1.X2n+2) d(Sx2n,TX2n+1)
Jo e(t)de = [ o(t)dt

d(x2n Sx2n)d0ean, Tx2n+1)+[d(x2n X2n+1)1%+d(x2n, Sx2n)d(2n, X2n+1)
d(xzn, Sxan)+d(xan, x )+d(xon, Tx )
= a fo 2n 2n 2, X2n+1 2n 2n+1 Q)(t)dt

d(x2n, Tx2n)d(x2n, X2n+1)+d02n, Tx2n+1)d(x2n, X2nt+1)+[d(2n, x2n+1)12

d(x2n, Sx2n)+d(x2n x2n+1)+d(x2n Tx2n+1)
+ﬁf0 @(t)dt
d(xan, Tx2n)d(x2n, Tx2nt1)+d0c2n, Sx2n)dG2n, x2n+1)+[d0G2n, x2n4+1)]12
d(x2n, Sx2n)+d(x2n, Xx2n+1)+d(x2n, Tx2n+1)
+)/f0 @(t)dt
d(x2n x2n+1)d02n, x2n42)+[d(r2n, X2n+ 112 +d(x2n X2n+1)d(x2n, X2n+1)
d(x2n, x2n+1)+d(x2n, x2n+1)+d(xX2n, X2n+2)
- fo o(t)dt
d(x2n, x2n+1)d(x2n, X2n+1)+d02n, x2n+2)d(x2n, X2n+1)+[d@x2n X2n+1)1?
d(x2n, x2n+1)+d(x2n, x2n+1)+dx2n, x2n+2)
+ﬁf0 @(t)dt
d(x2n, x2n+1)d(x2n, X2n42)+d02n, x2n+1)d(2n, X2n+1)+H[d0Gc2n, x2n+1)1?
d(x2n, x2n+1)+d(x2n, x2n+1)+d(x2n, x2n+2)
+)/f0 @(t)dt
Hence,

fod(x2n+1'x2n+2) Q)(t)dt i:(a’ + B + )/) fod(xzn,x2n+1) Q)(t)dt

Similarly;

fod(xzwxzn+1) Q)(t)dt =f0d(SXZn,Tx2n—1) Q)(t)dt
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d(x2n, Sx2n)d0ean, Tx2n—1)+[d(x2n x2n—1)1%+d(x2n, Sx2n)d(x2n, X2n—1)

d , S +d s —1)+d , T —
=« fo (x2n, Sx2n)+d(x2n, x2n-1)+d(x2n, Tx2n-1) Q)(t)dt
dCxzn, Tx2n)d(xzn, X2n-1)+d(x2n, Txan-1)d(x2n Xan—1)+[d(xz2n, X2n-1)12
d(xzn, Sxan)+d(x2n, x2n—1)+d(x2n, TXx21n-1)
+Bf0 2n 2n 21 X2n—1 2n 2n-1 Q)(t)dt
dCxzn, Tx2n)d(xz2n, Txan—1)+d(xzn, Sxan)d(X2n, X2n—1)+[d(x2n, x2n—1)1%
d(xzn, Sxan)+d(x2n, x2n—1)+dxon, Tx2n—1)
+yf0 2n 2n 2n X2n—1 2n 2n—1 Q)(t)dt
d(x2n, X2n+1)d(2n, x2n)+[d0Ge2n, X2n—1)1%+d(xX2n, X2n+1)d (20, X2n-1)
d(xz2n, Xx2n+1)+d(x2n, x2n—1)+d(x2n, Xx2n)
- fo o(t)dt
dCxzn, x2n+1)d(x2n, Xan—1)+d(xan, X2n)d(xz2n, X2n-1)+[d(X2n, X2n-1)]?
d(xan, x Y+d(x2n, x2n—1)+d(x2n, Xx21)
+Bf0 2n, X2n+1 2n, X2n—1 21 X2n Q)(t)dt
d(x2n x2n+1)d(x2n, x2n)+d02n, x2n+1)dG2n, X2n—1)+[d0Gc2n, x2n-1)1?
d(xan, x Y+d(x2n, x2n—1)+d(x2n, X21)
+yf0 2n, X2n+1 2n, X2n—1 21 X2n Q)(t)dt
Hence,

fod(xZn,xan) p()dt =(a+p+7y) fod(xzn_l'xzn) o(t)dt

=5 fod(xzn—pxzn) Q)(t)dt where 0 = + B +Yy

By this way, if we continue, we get

J<0d(x2n+1,xZn+2) @(t)dt < 6f0d(xZn,x2n+1) Q)(t)dt

<52 fod(x2n—1'x2n) Q)(t)dt

d(xq,x
<= 6‘2n+1 fo( 0 1) Q)(t)dt )
It is obvious that the following inequality holds for m > n.
m
d(xn» xn+m) = Zi:l d(xn+i—1» xn+i)

=¥ ™ (%, x1)

6‘)1
=15 d(xg, x1)
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By (2.1)

ld (e xnem)ll 8™ rlld(xox )l s™
fO (nnm) P(t)dt EMB fO (¥ox1) d(t)dt k=§
(3.12)

d(xwxn+m)

0 @(t)dt=0as n— 0. (3.1.3)

Which implies that

Now we prove that {xn} is a Cauchysequence. Suppose it is not.Then there exists an € > 0 and sub sequence

{ym (») }and {yn ®) }such that
M(p) << n(p) =< m(p+1) with

d(Xn(py Xm(p)) > ¢,
d(xn(p)—llxm(p) <« <€ (3'1'4)
Now
d(Xm(p)-1 @) -1 AXmp)-1, Xm@p)) + dXmp) Xnp)-1)
< d(Xmp)-1,Xmp)) + € (3.1.5)
From (3.1.3), (3.1.5), we get
lim fod(xm(p)'l’x”(p)'l)(p(t)dt < fogfp(t)dt (3.1.6)
p—)OO

Using (3.1.2), (3.1.4), and (3.1.6) we get,
ffo@ar < [T ) o)
< fod (*nm)-1%m(p)-1) o(t)dt

<[ p(t)dt

Which is contradiction, since k& (0, 1).
Hence, {xn} is a Cauchy sequence, so by the completeness of X this sequence must be convergent in X. Let z be

the limit of {X, } .

Now if we assume z 7 Tz, then d(z,Tz)> (. If we use the triangle inequality and Inequality (3.1) we have

fod(Z,TZ) Q)(t)dt i:fod(Z,xZn+1) Q)(t)dt +f0d(x2n+1,TZ) Q)(t)dt
_ fod(Z,x2n+1) Q)(t)dt +f0d(sx2”’Tz) Q)(t)dt

< fod(z'x2n+1) @(t)dt
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d(x2n, Sx2n)d(x2n T2)+[d(X2n, 2)]%+d(x2n, SX2n)d(*2n.2)
+a fo d(xan, Sxo2p)+d(xan, 2)+d(x2n,T2) @(t)dt

d(x2n, Tx2n)d(x2n,2)+d(x2n,T2)d(x2n.2) +[d(x2n.2)]?
d , S d i d T
+B fo (x2n, Sxan)+d(xan, 2)+d(x2n,T2) Q)(t)dt

d(x2n, Tx2n)d(x2n,T2)+d(x2n, Sx2n)d(x2n.2)+[d(x2n.2)]?
d , S d E d T
+yf0 (x2n, Sxan)+d(x2n, 2)+d(x2n,T2) Q)(t)dt

_ fod(z'x2n+1) Q)(t)dt

d(x2n x2n+1)d02nT2)+[d(x2n, 2)]12+d(x2n ¥2n+1)d(x2n.2)
i a d(x2n, X2n+1)+d(x2n, 2)+d(x2n,T2z) Q) ) dt
0

d(x2n, X2n+1)d(c2n,2)+d(x2n,T2)d(x2n.2)+[d(x2n,2)]?
d E d i d T
+B fo (xX2n, X2n+1)+d(x2n, 2)+d(x2n,T2) Q)(t)dt

d(x2n, X2n+1)d0x2n T2)+d(x2n, X2n+1)d(x20.2)+[d(x20,2)]?
d s d s d ,T
+yf0 (x2n, x2n+1)+d02n, 2)+d(x2n,Tz) Q)(t)dt

So using the condition of normal cone;
lla(z,T2)|l

IX B(t)dt

<

M

flld(z'x2n+1)” Q)(t)dt +

0
”d(XZn.x2n+1)d(x2n.TZ)+[d(x2n. 2)]2+d(x2n X2n+1)d(xX2n.2)
a fo d(x2n, xan+1)+d(x2n, 2)+d(x2n,Tz) Q)(t)dt +
”d(xZn, Xon+1)d(X20,2) +d(Xp0, T2)d(X27,2) +[d(X0,2)] 2
B fo d(x2n, X2n+1)+d(xan, 2)+d(x2n,T2z) Q)(t)dt +
”d(XZn.x2n+1)d(x2n.TZ)+d(x2n.x2n+1)d(x2n.2)+[d(x2n.2)]2
d(x2n, xXan+1)+d(x2n, 2)+d(x2nT2z)
y fo n n n n Q)(t)dt }

As n — ©O, we have

199
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Which is a contradiction. Hence, we get z =Tz; i.e zis a fixed point of T.

Similarly; let us suppose that z 7= Sz, then d(z,5z)> 0.
d(z,s d(z, d ,S.
fo (Z Z) Q)(t)dt < fo (Z x2n+2) Q)(t)dt +f0 (x2n+2 Z) Q)(t)dt

_ fod(Z,xZn+2) Q)(t)dt +f0d(SZ,Tx2n+1) Q)(t)dt
= fod(z'x2n+2) Q)(t)dt

d(z,sz)d(z,Tx2n+1)+[d(z,x2n+1)]2+d(z,SZ)d(Z,x2n+1)
va f d(z, $2)+d(zx2n+1)+d(ZTx2n+1) @(t)dt

d(z,Tz)d(z,x2n+1)+d(z,Tx2n+1)d(z,x2n+1)+[d(z,x2n+1)]2
d(z, Sz)+d(z, )+d(z,T )
+B fo z, 5z z,X2n+1 z,I'X2n+1 Q)(t)dt

d(z,Tz)d(z,Tx2n+1)+d(z,Sz)d(z,x2n+1)+[d(z,x2n+1)]2
d(z, Sz)+d(z, d(z,T
+)/f (z, Sz)+d(zx2n+1)+d(zTx2n+1) @(t)dt

d(zx2n+2)
- @(t)dt
d(z,82)d(zX2n+2)+[d(Zx2n+1)]2+d(2,52)d(2,X2n+1)
e fo d(z, Sz)+d(zx2n+1)+d(zx2n+2) Q)(t)dt

d(Z,TZ)d(Z,xZ-rH.1)+d(Z,X2n+2)d(Z,xZn+1)+[d(Z,xZn+1)]2
d(z, Sz)+d(z, )+d(z, )
+B fo z, 5z Z,X2n+1 z,X2n+2 Q)(t)dt

d(z,Tz)d(z,x2n+2)+d(z,Sz)d(z,x2n+1)+[d(z,x2n+1)]2
d(z, Sz)+d(z, d(z,
+yf (z, Sz)+d(zx2n+1)+d(Zx2n+2) Q)(t)dt

So by (2.1),

f, ™ p(0yat

d(z,Sz)d(z,x2n4+2)+ [d(z,x2n+1)]2 +d(z,52)d(z,x2n+1)

”d(z’xZ +2)” ” d(Z, Sz)+d(z,x2 +1)+d(Z,X2 +2)
M [ R edt +a " "

d(zT2)d(zx2n+1)+dZXn+2)dZ X0 +1)+[dZ X0 +1)]12

ﬁ f” d(z, Sz)+d(zx2n+1)+d(zx2n+2) ” Q)(t)dt +

d(z,Tz)d(z,xypn42)+d(2,52)d(z,x2n+1)+[d(z2, x2n+1)]

” d(z, Sz2)+d(zx2n+1)+d(zx2n42) ”
v Jy " " (b(t)dt}

200

@(t)dt +

1A
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Hence,

[N g0)de <o

A contradiction. Therefore d(z ,Sz) =0 and so z =Sz, i.e z is a fixed point of S.
Hence we find that z is a common fixed point of S and T.
For the uniqueness of z, let us suppose that d(x,Sx) + d(x,y) + d(x,Ty) = 0 implies d(Sx,Ty) = 0 and that w is
another fixed point of T in X. Then,

d (z,Sz) + d (z,w) + d(z, Tw) = 0 implies d (Sz,Tw) =0.
Therefore, we get

d (z,w) =d (S8z,Tw) =0,

which implies that z = w, and this is the desired consequence.
3.2. Definition. Two self- mappings S and T of a cone metric space (X,d) are said to be weakly commuting if the

following is satisfied for all x & X;

d (STx,TSx) = d (Sx,Tx).

3.3. Definition. Let S and T be self — mappings of a cone metric space ( X,d) with a normal cone K. Then { S,T}
are said to be compatible if

lim,_ d (STx,, TSx,) =0

Whenever { X, } is a sequence in X such that lim TXy = lim SXp = w for some win X.
n—-0o n—>00
3.4. Theorem. Let (X,d) be a BA- complete cone metric space, K a BA-normal cone with normal constant M.
Suppose the mappings {S,I} and {T,J} be weakly commuting pairs of self- mappings satisfying the following:
1) TX) =I1X), SX) =17 (X).

(2) For all x,y in X ; either

d(Ix,Sx)d(Ix,Ty)+ [d(Ix,]y)]2 +d(Ix,Sx)d(Ix,]y)

d(Sx,T
fo (Sx,Ty) Q)(t)dt ‘Ea’fo d(Ix,Sx)+d(Ix,Jy)+d(Ix,Ty) Q)(t)dt

d(Ix, Ty)+d(Ix,]y) d
B e@de vy 2P odt

for all x, y in X with x# y, 0< & + ﬁ + 7y <1 and Q):[O,+ 00) —[0,+ 00) is a Lebesgue integrable

mapping which is summable on each compact subset of [0,+ 00) , non- negative ,and such that for each & > 0,

fog @(t)dt . Also
d(Ix, SX) + d(Ix,]y) + d(Ix, Ty) F 0. Then S and T have a common fixed point. Further if
d(Ix, SX) + d(Ix,]y) + d(Ix, Ty) = 0 implies d(Sx,Ty) = 0, If any of S, T, I, or J is continuous then

S, T, I, and J have a unique common fixed point z. Furthermore, z is the unique common fixed point of S and I as
well as of T and J.

Proof. Take X(y as an arbitrary point of X. Since S(X) © J (X) we can find a point X in X such that SXqg =JX7.
Also, since T(X) © I (X) we can choose a point X with TXq =1X5. In general; for the point X5, we can

pick up a point X4, 41 such that SX5p, =JX24 41 , and then a point X4, 42 with TX24, 41 =Xy 42. Forn
=0,1,.......

Let us form Doy =d (SXop, TXop41) and Doyyq =d (SX2p42, TX2141)-
Suppose Dy =d (SXop, TXop41) F0and Doy i1 =d(SXapn42, TX2p41) F0forn=1,. .......

Now,

J«0D2n+1 @(t)dt =f0d (Sxon42,TXopn41) Q)(t)dt
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d(Ix2n+2, Sxan+2)dUxz2n42, Tx2n+1)+[dUx2n42, Jx2n+1)]12
+d(Ix2n+2, Sx2n+2)dIX2n+42, JX2n+1)
d(Ix2n+2, Sxan+2)+dUx2n+2, Jx2n+1)+dUx2n+2, TX2n+1)

<a fo ¢(t)dt

d(Ix2n+2, Tx2n+1)+dUx2n+2, JX2n+1)

+ﬁf0{ 2 } @(t)dt

+yf0d(1x2n+2,]x2n+1) é(t)dt

d(Tx2n+1, Sx2n+2)d(Tx2n41, Tx2n+1)+[d(Tx2n41, Sx2n)]?
+d(Tx2n+1, SX2n+2)d(TX2n+1, SX2n)
d(Tx2n+1, Sx2n+2)+d(Tx2n+1, Sx2n)+d(Tx2n+1, TX2n+1)

.y fo @(t)dt

d(Tx2n+1, Tx2n+1)+d(Tx2n+1, Sx2n)

+B fo{ 2 } @(t)dt

vy fod(Tx2n+1'5x2n) @(t)dt

< (a n g 4 )/) fd(Tx2n+1,Sx2n) B(t)dt

0
Which implies that
[P g)dt <A [0 9(0de <A [ g(t)dt
=

{_:/12n+1 fODO Q)(t)dt
Where A =a + B + ¥y < 1. Using (2.1),

f||D2n+1” o(t)dt <= M A2+l fOHDO” @(t)dt .

0
lD I d (Sx ,Tx
In this inequality, fO antt P(t)dt — 0as n — o2, so fO (S¥an+2 Tozne1) @(t)dt » 0as n
—+ D, We get the following sequence
{Sx0, Tx1,Sx5, TX3, eue s, SXop, TXopi1s een e e b e (3.4.1)

Which is a Cauchy sequence in the complete cone metric space( X,d), and therefore converges a limit point z € X.
Therefore the sequences

{SxZn} = {]X2n+1} , {TxZn—l} = {IxZn} which are subsequence of (3.4.1) and hence also converge to
the same point z € X.
Let assume that I is continuous so that the sequence {I ZXZn} and {ISXZn} converge to the same point Iz.

We know that S and I are weakly commuting so we have;

fod (SIx3p,1Sx57) Q)(t)dt i:fod (Ix2n,5%2n) Q)(t)dt )
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And using (2.1)
ld (SIx2p,1Sx2)|I ld (Ix25,Sx22)l
Jy mEmemT g)dt =wm [T g(t)dt

Hence the sequence {SIX Zn} converges to the point Iz.
Now,

(Iz,SIx3p) @(t)dt +fd(SIx2n,Tx2n+1) @(t)dt

d(Iz,z) d
) P(t)dt < [ ,

0 0

+f0d(Tx2n+1,z) @(t)dt

d(Iz,SIx2p
< [ g)dt +a

d(12x2n,51x20)d(12 x50, Tx2n+1)+[d(I2xX2n,Jx 20 +1)12 +d(12 x20,51x20) A% X200, ) X 21 41)
f A(I?xon,SIxan)+d(I2x2n,Jx2n+1)+d(%x2n.Tx2n+1) Q)(t)dt
0

d(I%xn,Txon41)+d(I%Xon,JX2n41)

+B J, 2 @(t)dt

2
+yf0d(1 Xon)Xon+1) Q)(t)dt . fod(TxZn+1'Z) Q)(t)dt

Which with Inequality (2.1), gives

d(1z,
fJ' =20 66)de < M
( d(12x2n.51x2n)d(12x2n.Tx2n+1)+[d(12x2n.]x2n+1)]2

+d(I1%x2n,SIx2n)d(I*x2n.JX2n+1)
d(I2x2n,S1x2n)+d(I12x20,) X 20 +1)+d(I% %20, TX2n41)

lld(1z,SIxz )
I 0@+ af Bt +
\

”d(12x2n.Tx2n+1)+d(12x2n.]x2n+1)

B fo ’

o(H)dt + y f0||d(12x2n,]x2n+1)|| B(t)dt +

folld(TxZTL+1’Z)” @(t)dt

So

folld(IZ,Z)” Q)(t)dt “‘_:M(%+ B +y) f0||d(IZ,Z)” Q)(t)dt
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ld(1z,z)ll

Hence (Iz2) Q) t)dt =0and Iz =z We want to show that Sz = z, too. Using the same inequality, we
0 g q y

have

(96522 g(ryde < [ACHTm) gpyar o (AT g1y

d(Iz,SZ)d(IZ,TX2n+1)+[d(IZ,]xZn+1)]2+d(IZ,SZ)d(IZ,]x2n+1)
< f d(Iz,Sz)+d(z,]x2n+1)+d(zTx2n+1) P(t)dt

d(z,Txan+1)+dUZJx2n+1)

+Bf0 2 @(t)dt

+yf0d(lz,]x2n+1) Q)(t)dt + fod(szn-'-l’Z) @(t)dt

And again if (2.1) is used;

J<|Id(Sz,z)||

) @(t)dt =m

”d(lz,Sz)d(Iz,Tx2n+1)+ [dUz,]xon+1)]%+dUz,S2)d(IZ,]X2n+1)

d(1z,52)+d(Iz,JXzn+D+d(2TX2n+1) @(t)dt +
”d(IZTx2n+1)+d(IZ]x2n+1)”
i f o(t)dt +
iz, d(Txzn41,
v fOH Iz Jxm+ D) Q)(t)dt + foll (Tx2n+1,2)l @(t)dt}
And, as n tends to infinity,
”d(z S2)d(z,2)+[d(z,2)]*+d(2,52)d(z,2) ” d(z,Tz)+d(z,2) ”
_ d(z,52)+d(z,2)+d(z.2) @(t)dt + B fo 2 o(t)dt +

y folld(z,Z)” o(t)dt + f0||d(Z,Z)|| @(t)dt}

on J<|Id(Sz,z)||

0 @(t)dt =0 and hence Sz =z.

We have seen that Sz =z, and we know that S(X) CJ(X) so we can always find a point w such that Jw =z.
Thus,

(AT g0t = [FC™ gy dt

d(1z,52)d(Iz,Tw) +[d(IzJw)]|*+d(I2,S2)d(Iz]w)
a fo d(Iz,Sz)+d(Iz,Jw)+d(Iz,Tw) Q)(t)dt

d(Iz,Tw)+d(Iz,Jw)

B 2 P(t)dt +yf0d(lz'lw) @(t)dt
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B rd(z,Tw)

So that d(Z, TW) =0,Tw=z
Since T and J weakly commute
d (Tz, Jz ) = d(TIw, JTw) = d(Jw, Tw) = d(z,z) = 0,

which gives Tz =Jz, and so

fod(z,Tz) @(t)dtzfod(Sz,Tz) Q)(t)dt

d(Iz,Sz)d(Iz,Tz)+[d(Iz,]z)]Z+d(Iz,Sz)d(Iz,]z)
<a fo d(1z,Sz)+d(1z,]z)+d(1z,Tz) Q)(t)dt

d(1z,Tz)+d(1z,]z) d(Iz,]Jz)

Bl o®dt vy ] @(t)dt
- G+p+y) [ ot

We get that z =Tz, consequently this yields Tz = Jz =z.

Thereby we have proved that the mappings S, T, I and J have a common fixed point. The proof is the same if one of
the mappings S, T, J is continuous instead of I.

To show that z is unique, let u be another common fixed point of S and I. Then

J«Od(u,z) @(t)dtzfod(Su,Tz) Q)(t)dt

d(Iu,Su)d(Iu,Tz)+[d(Iu,]z)]Z+d(Iu,Su)d(Iu,]z)
<a fo d(Iu,Su)+d(Iu,Jz)+d(Iu,Tz) Q)(t)dt

d(Iu,Tz)+d(Iu,]z) d(Iu ]Z)

+ﬁf0 2 @(t)dt +)/f0 @(t)dt
a d(u,z)
- G+p+y) [, o@at
Again we get u = z. In the same way it can be show that z is the unique fixed point for the mapping T and J.

3.5. Remark. Weakly commuting mappings are obviously compatible, but the converse need not to be true. So,
the condition weak commutativity can be replaced with compatibility with the same assumptions in the theorem.
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